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The challenge

Affordable and sustainable green hydrogen
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Cost Optimization Environmental Impact Hydrogen Demand
Produce more Decisions affect Meet future global
hydrogen at the emissions, water use, and national needs
lowest possible cost sustainability

Balance economic efficiency with
environmental responsibility
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Our solution
e-Hydrogen Cost Optimizer

Developed in MILP library: LCA library: Operating
| System
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Coastal application

We applied the optimizer in Saudi Arabia's coastal cities:
Yanbu, Jubail and Duba

Duba

Hydrogen production
relies on desalinated
water
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The optimizer can

be adapted
worldwide




Architecture

e-Hydrogen Cost Optimizer Architecture
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Home Tab

e-Hydrogen
Cost Optimizer

& Home

.:E; Hydrogen production
@} LCOH Optimization
p Explore Time Series
@ LcoH Analysis

# LCOE Analysis

ﬂ Renewables Analysis
¢=y Life Cycle Assessment

@ Visit e-h2.org

Appearance Mode:

H e-Hydrogen Cost Optimizer by KAUST (v.0.3.2)

Quick instructions

Visit our website: https://e-h2.org for more information and
updates.

Please follow the steps:

1. Enter the location coordinates.

2. Type in the system parameters in the Home tab.

3. Type in the water desalination, electrolyser and hydrogen
storage settings in the Hydrogen Production tab.

4. Optimize to find out the Levelized Cost of Hydrogen (LCOH)
related to the minimum Total System Cost in the Optimizer Tab,
you have the option to optimize to guarantee an annual or daily
hydrogen demand, choose your preference.

5. Go to the Explore Time Series tab to view in detail how the
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Renewable energy sources:

Photovoltaics (PV):
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Hydrogen Tab

I-b e-Hydrogen Cost Optimizer by KAUST (v.0.3.2)

Water desalination

e—Hyd rogen Water desalination:

Cost Optimizer

Water efficiency | enter value

Electrolyser: Electrolyzer '

S/kwW

8 Home

usl; Hydrogen production

value S/kwW

Efficiency Vi kKWhikg H:

&} LCOH Optimization

40 Explore Time Seri Stack Size value MW/stack
ore Time Series :

Lifetime value

@ LcoH Analysis

# LCOE Analysis

Hydrogen Storage: Hydrogen storage

ﬁ Renewables Analysis

Life Cycle Assessment

OPEX

@ Visit e-h2.0org

Appearance Mode:

Light ~ King Abdullah University of Science and Technology, Clean Energy Research Platform (CERP)
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LCOH Optimization Tab

H e-Hydrogen Cost Optimizer by KAUST (v.0.3.2)

e-Hydrogen LCOH Optimization

Cost Optimizer

o Home

-:E'} Hydrogen production
@} LCOH Optimization
@ Explore Time Series
@ LcoH Analysis

# LCOE Analysis

ﬁ Renewables Analysis
Life Cycle Assessment

@ Visit e-h2.0rg

Appearance Mode:

Optimization parameters

Optimization completed successfully!

Guarantee an Hourly Demand Guarantee a Daily Demand  Guarantee a Yearly Demand

3= 1923 KWh/kWp*year

rl\ 1207 kWh/kWp*year

Name
LCOH
Wind Capacity
Solar Capacity
Batt. Power Capacity
Batt. Energy Capacity
Electrolyser 1 Cap.
Electrolyser 1 CF
H2 Storage
Average daily H2

Value
2.89
0.00

7049.32
0.00
0.00

5251.00
0.29

647817

728273

Unit
§/kgH2
MW
MW
MW

MW

kg
kg

Optimization results

Distribution Analysis of LCOH

52.6%

Battery Wind
mmm H2 Storage PV
mm Water Desalination mmm  Electrolyser
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King Abdullah University of Science and Technology. Clean Energy Research Platform (CERP)




LCOH Analysis

I-h e-Hydrogen Cost Optimizer by KAUST (v.0.3.2) - X

e-Hydrogen
Cost Optimizer

& Home

E Hydrogen production
(&} LCOH Optimization
£ Explore Time Series
@ LcoH Analysis

# LCOE Analysis

ﬁ Renewables Analysis
¢=y Life Cycle Assessment

@ Visit e-h2.0rg

Appearance Mode:

LCOH Distribution Analysis:

Categories
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LCOH distribution
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Explore Time Series

H e-Hydrogen Cost Optimizer by KAUST (v.0.3.2) - X
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Renewable Analysis

I'b e-Hydrogen Cost Optimizer by KAUST (v.0.3.2)

e-Hydrogen
Cost Optimizer

& Home

sdsly Hydrogen production
G} LCOH Optimization

‘C Explore Time Series
@ LcoH Analysis

# LCOE Analysis

ﬁ Renewables Analysis

Life Cycle Assessment

@ Visit e-h2.0org

Appearance Mode:

Electricity produced from PV and wind turbines:

Distribution of Daily Electricity Output per kWh Installed from PV Modules
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Life Cycle Assessment

H e-Hydrogen Cost Optimizer by KAUST (v.0.3.2)

LCIA method selection

e'Hyd rogen Life Cycle Impact Assessment (LCIA):
Cost Optimizer

Climate Change / Global Warming Potential CML v4.8 2016 v Perform LCA

LCA Contribution Analysis: LCA results

LCA Contribution Analysis

Hectrolyser
0276 kg CO;eq

ﬂ fome Electricity Production

Photovoltaics

2279 kg CO;2q
*rS-

sdsly Hydrogen production
& LCOH Optimization

D Explore Time Series

Plant Operation
Hectrolyser

& LCOH Analysis 2626 kg CO;-eq

# LCOE Analysis

Hydrogen Storage
. Type IV
ﬁ Renewables Analysis 0.047 kg CO:-eq
tap water production
seawater reverse 0smosis
Life CYC|E Assessment ultrafiltration pretreatment
enhance module
two stages
0023 kg COs-eq
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Electricity Production, Photovoltaics

market for photovoltaic slanted-roof installation, 3kWp, )
single-Si, panel, mounted, on roof [unit]

1/(lifetime*(capacity*1000)§FLH_pv) .

Y

lifetime = PV modules lifetime [years]
capacity = 0.003 [MW]

FLH_pv = local full load hours for PV [h/year]

G )

market for tap water [kg]

installation*panel_area_scSi*water_pv_panels_cleaning

Y

installation = market for photovoltaic slanted-roof installation,
3kWp, single-Si, panel, mounted, on roof, amount [unit]
panel_area_scSi= 214 [ m?/unit]

water_pv_panels_cleaning = 20 [kg/m?]

.

market for wastewater, average [m?]

-tapwater/1000

tapwater = market for tap water, amount [kg]

Electricity Production,
Photovoltaics

N

N\

__

EcoEditor.exe

1 kWh electricity,
low voltage




Plant Operation, Electrolyzer
N I

Electrolyzer [unit]

(electrolyzer_capacity)/(days*lifetime*daily_hydrogen_demmand)

electrolyzer_capacity = electrolyzer capacity from TEA model [MW]
days = 365 [days]

lifetime = electrolyzer lifetime [years]

daily_hydrogen_demmand = average daily Hz production from TEA
\model [kg/day]

Y

J
N

/Electricity Production, Photovoltaics [KWh]

electrolyzer_efficiency*solarCapacity/(solarCapacity+windCapacity)

Y

electrolyzer_efficiency = specific energy consumption [kWh/kg Hz]
solarCapacity = PV modules size from TEA model [MW]
\windCapacity = Wint turbines size from TEA model [MW] /

-

Electricity Production, Wind Turbine [KWh]

electrolyzer_efficiency*windCapacity/(solarCapacity+windCapacity)

electrolyzer_efficiency = specific energy consumption [kWh/kg H:]
solarCapacity = PV modules size from TEA model [MW]
\windCapacity = Wint turbines size from TEA model [MW]

J
4 I
Hydrogen Storage [kg] Plant Operation,

Electrolyzer

hydrogen_storage/(days*lifetime*daily_hydrogen_demmand) > TkgHz

hydrogen_storage = Hz storage from TEA model [kg]

days = 365 [days]

lifetime = electrolyzer lifetime [years]

daily_hydrogen_demmand = average daily Hz production from TEA
model [kg/day]

-

J
~

/market for battery, Li-ion, LFP, rechargeable, prismatic kgl

(battery_energy_capacity*10e6)/battery_density/(days*lifetime*dail
y_hydrogen_demmand)

battery_energy_capacity = battery energy capacity from TEA model
[MWh]

battery_density = 120 [kg/Wh]

days = 365 [days]

lifetime = electrolyzer lifetime [years]

daily_hydrogen_demmand = average daily Hz production from TEA

\model [kg/day] J

Y

tap water production, seawater reverse osmosis, [kgl
ultrafiltration pretreatment, enhance module,
two stages

Y.

tap_water

tap_water = 10 [kg/kg H:]
P g J o J




LCOH RESULTS
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LCA RESULTS
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Market group for
electricity, low voltage:
0.218

Electrocatalyst Anode:
0.036

Bipolar Plate: 0.0165
Electrocatalyst Cathode:
0.00338

Membrane Polymer:

0.00137

Bolts and Screws: 3.8E-4

End Plate: 2.51E-4

Steel Construction
Element: 0.00921

Container with Pipes and
Fittings for Diaphragm
Compressor: 0.00742

Heat Exchanger: 0.00441

Diaphragm for Diaphragm
Compressor: 0.0043

Container: 0.00396
Power Electronics:
0.00246

Control Panel /
Electronics: 0.00209

Buffertank: 0.00195

Water Purifier and
Feedtank: 0.0015

Tubing and Pump:
0.00143

Frequency Convertor for
Diaphragm Compressor:
0.00103

Gas Purification and
Water Treatment: 9.3E-4

Valves: 9.26E-4

Foundation: 5.32E-4

Water Gas Separator:
3.83E-4

lon Exchange for Water
Treatment: 3.32E-4

Back Pressure Regulator:
1.15E-4

market for photovoltaic
slanted-roof installation,
3kWp, single-Si, panel,
mounted, on roof: 2.35

Stack: 0.203

BoP: 0.0662

market for tap water:
1.6E-4

market for propylene:
0.0976

market for silicon,
electronics grade: 0.047

market for ammonia,
anhydrous, liquid: 0.0417

market for steel,
low-alloyed: 0.0139

market for polyethylene,
high density, granulate:
0.0121

market for chromium steel
pipe: 0.0106

market for glass fibre
reinforced plastic,
polyester resin, hand
lay-up: 0.00914

market for polymer
foaming: 0.00146

11 B i N

PV Modules: 2.35

Electrolyzer: 0.269

Battery: 0.424

Water: 0.0225

I Hydrogen Storage: 0.284

Total: 3.35

LCA
DISTRIBUTION
RESULTS




WHAT IS NEXT?

To add different hydrogen electrolysis

technologies:

Alkaline
Solid Exchange Oxide Cell

To add hydrogen derivatives :

E-Ammonia
E-Methanol
E-Diesel




QUESTIONS?

e-h2.orqg
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